Center Conductor Captivation

Captivation Method	Retention Forces	Application Guide
Epoxy Groove Epoxy Groove	SMB,SMC,SSMA SMA,TNC,N Type 8.0 Kgf Min Axial 4.5Kgf Min Axial 0.056Kgf Min Radial 0.112Kgf Min Radial SMB,SMC,SSMA SMA,TNC,N Type 2.8Kgf Min Axial 4.5Kgf Min Axial 0.028Kgf Min Radial 0.098Kgf Min Radial	It offers the most rigid captivation of all. It is ideal for applications where the contact is soldered directly to a circuit element which may be damaged by axial or rotational displacement of the contact.
Shoulder	2.8Kgf Min Axial 0Kgf Min Radial	It provides the highest axial displacement force of all the mechanism capture designs, however, offers no rotational captivation.
Barb	1.8Kgf Min Axial 0Kgf Min Radial	It is simple and cost effective, however, the displacement force is non-symmetrical: 30% higher in one direction than the ohter.
Roll Thread	2.8Kgf Min Axial 0Kgf Min Radial	It is provides a symmetrical axial capture and exceptional electrical performance characteristics. This technique is applied in designs low VSWR.
Straight Knurl	2.8Kgf Min Axial 0.056Kgf Min Radial	It provides the highest axial displacement force of all the mechanism capture designs, also, offers high rotational captivation.
Straight Knurl	EIA 49.8Kgf Min Axial 0.98Kgf Min Radial	It provides the highest axial displacement force of all the mechanism capture designs, also, offers high rotational captivation.
Snap-In	2.8Kgf Min Axial 0Kgf Min Radial	It is simple and cost effective, however, offers rotational captivation.

